

US 2013009177A1

(19) **United States**

(12) **Patent Application Publication**
Chang et al.

(10) **Pub. No.: US 2013/0009177 A1**
(43) **Pub. Date: Jan. 10, 2013**

(54) **ORGANIC LAYER DEPOSITION APPARATUS
AND METHOD OF MANUFACTURING
ORGANIC LIGHT-EMITTING DISPLAY
DEVICE BY USING THE SAME**

B05C 13/00 (2006.01)
H01L 51/52 (2006.01)
B05C 15/00 (2006.01)
(52) **U.S. Cl. 257/88; 438/34; 118/50; 118/712;
257/40; 257/E51.019**

(76) Inventors: **Seok-Rak Chang**, Yongin-city (KR);
Myeng-Woo Nam, Yongin-city (KR);
Hee-Cheol Kang, Yongin-city (KR);
Jong-Heon Kim, Yongin-city (KR);
Jong-Won Hong, Yongin-city (KR);
Uno Chang, Yongin-city (KR)

(21) Appl. No.: **13/492,144**

(22) Filed: **Jun. 8, 2012**

(30) **Foreign Application Priority Data**

Jul. 4, 2011 (KR) 10-2011-0066124

Publication Classification

(51) **Int. Cl.**
H01L 51/56 (2006.01)
B05C 11/00 (2006.01)

(57) **ABSTRACT**

An organic layer deposition apparatus, and a method of manufacturing an organic light-emitting display device using the organic layer deposition apparatus. The organic layer deposition apparatus includes: an electrostatic chuck that fixedly supports a substrate that is a deposition target; a deposition unit including a chamber maintained at a vacuum and an organic layer deposition assembly for depositing an organic layer on the substrate fixedly supported by the electrostatic chuck; and a first conveyer unit for moving the electrostatic chuck fixedly supporting the substrate into the deposition unit, wherein the first conveyer unit passes through inside the chamber, and the first conveyer unit includes a guide unit having a receiving member for supporting the electrostatic chuck to be movable in a direction.

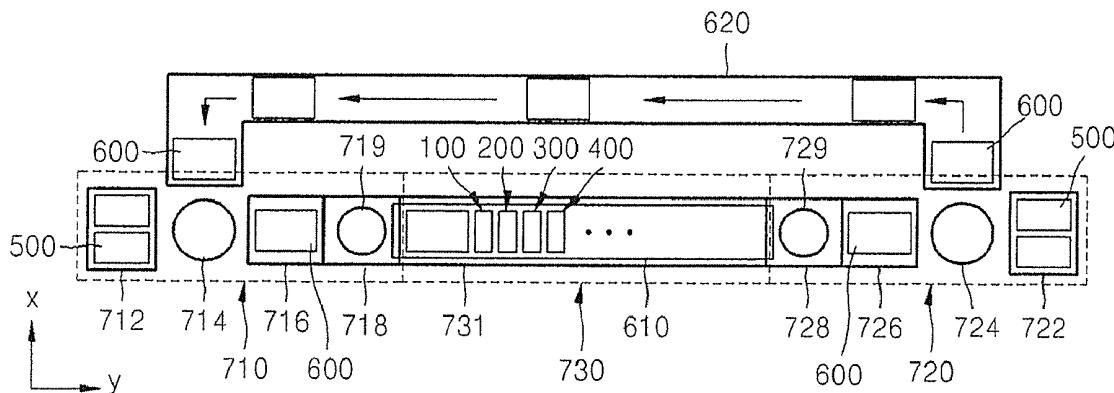


FIG. 1

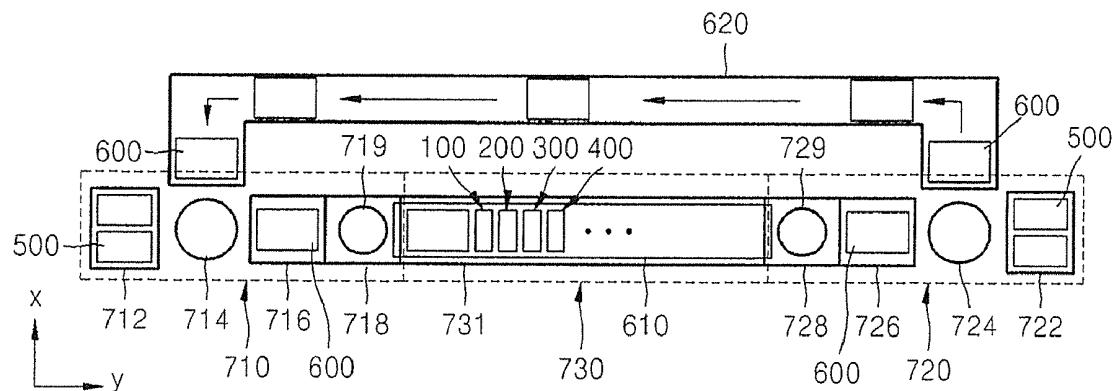


FIG. 2

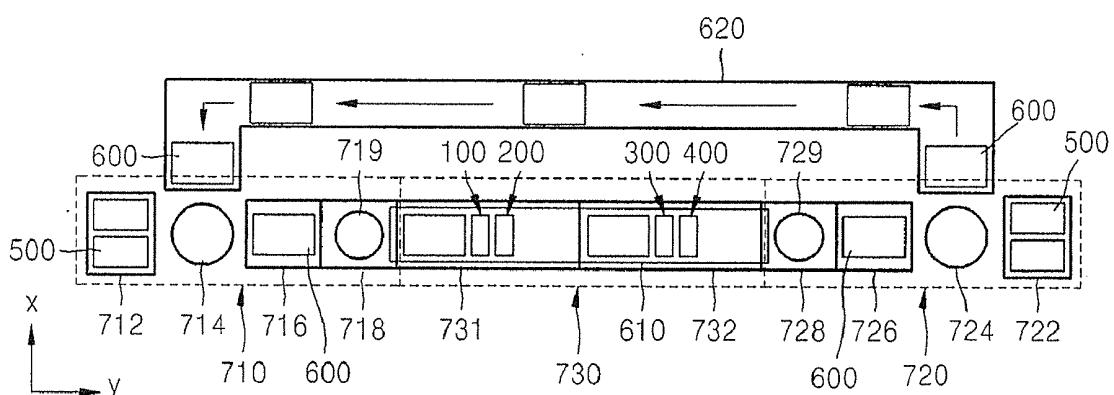


FIG. 3

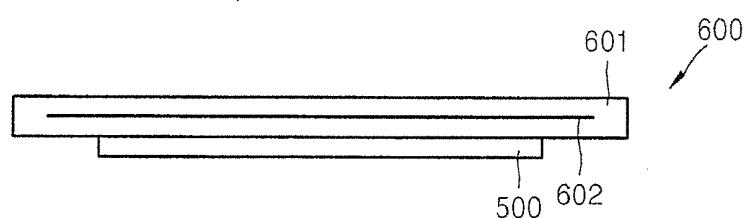


FIG. 4

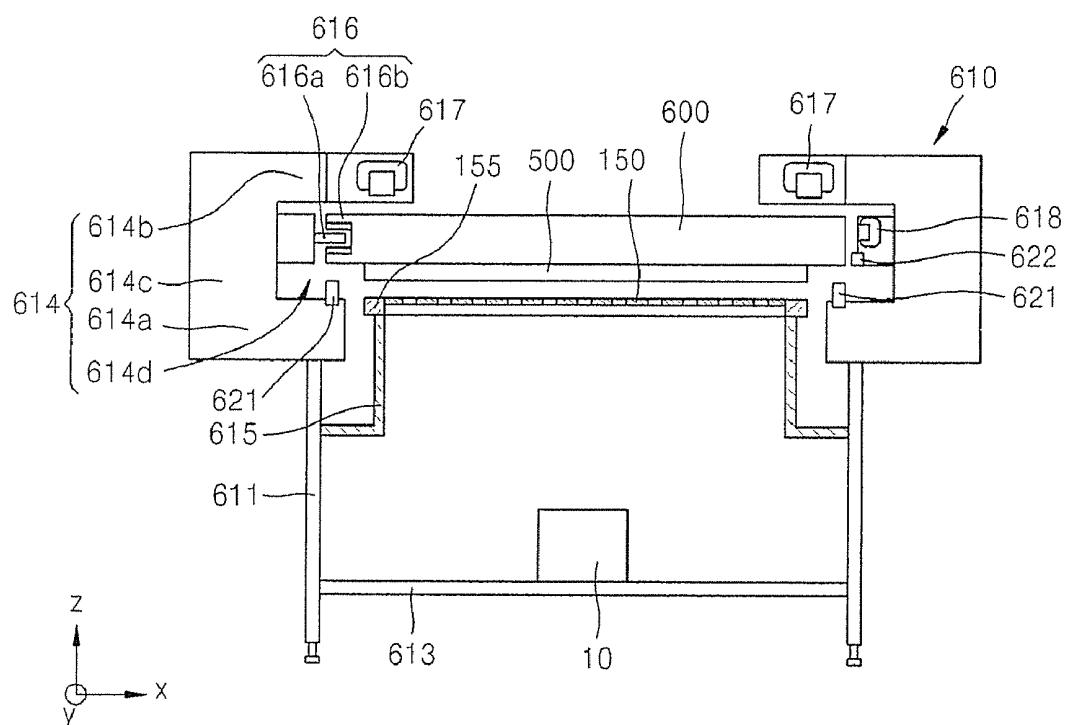


FIG. 5

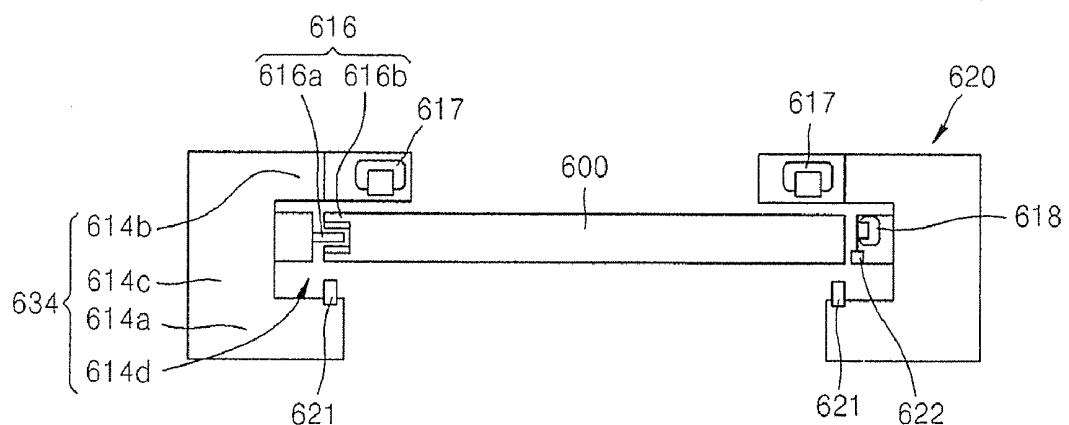


FIG. 6

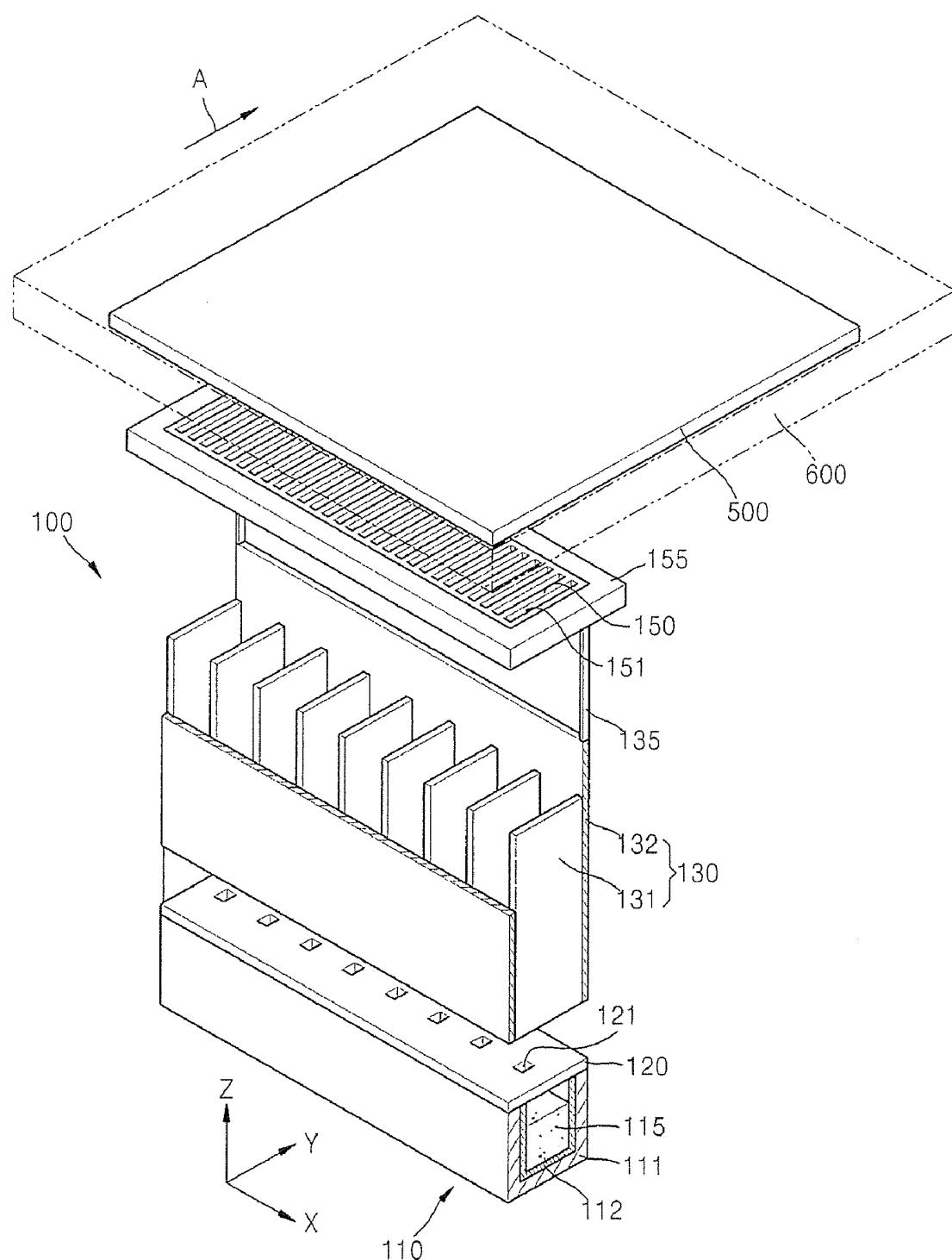


FIG. 7

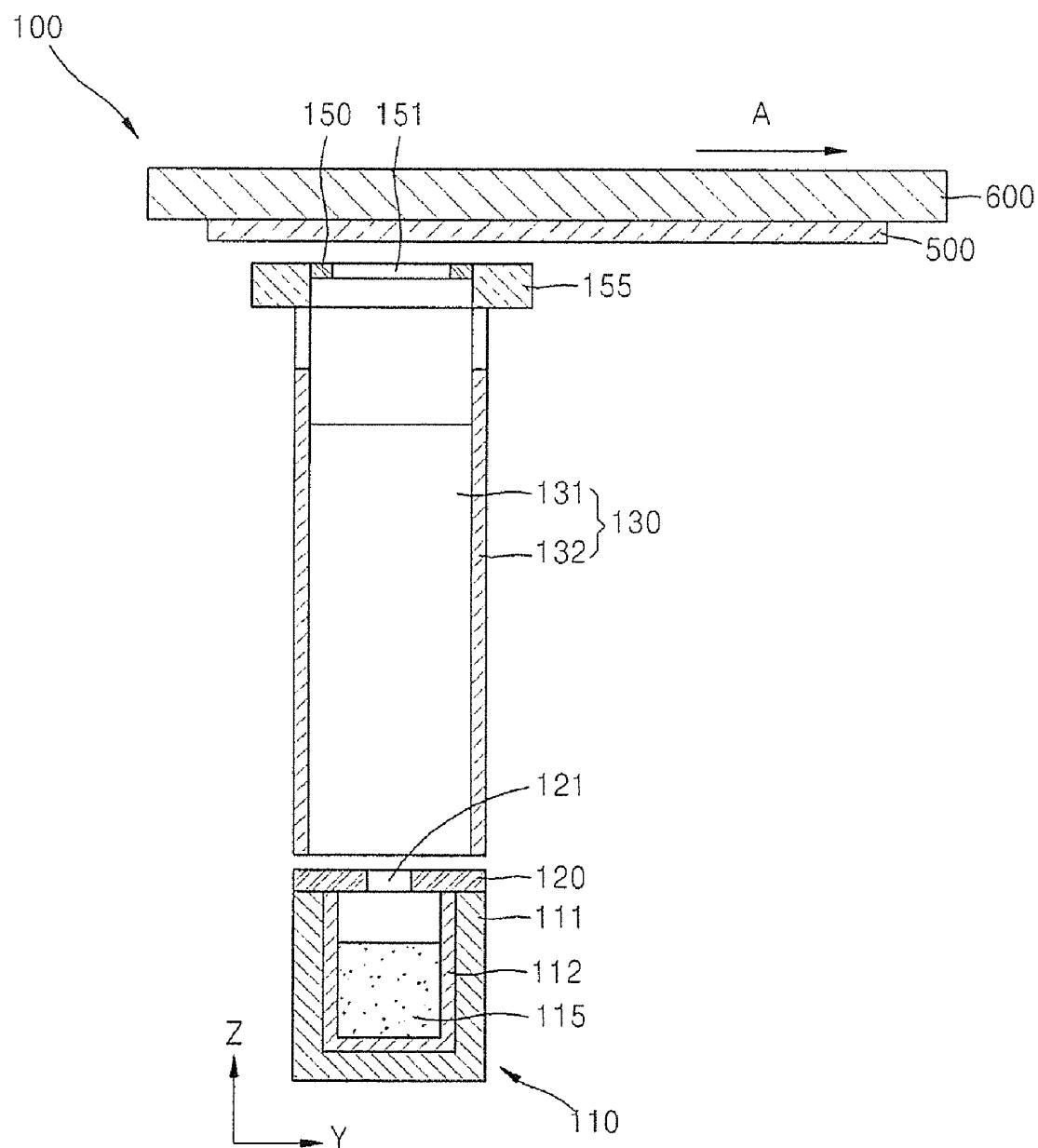


FIG. 8

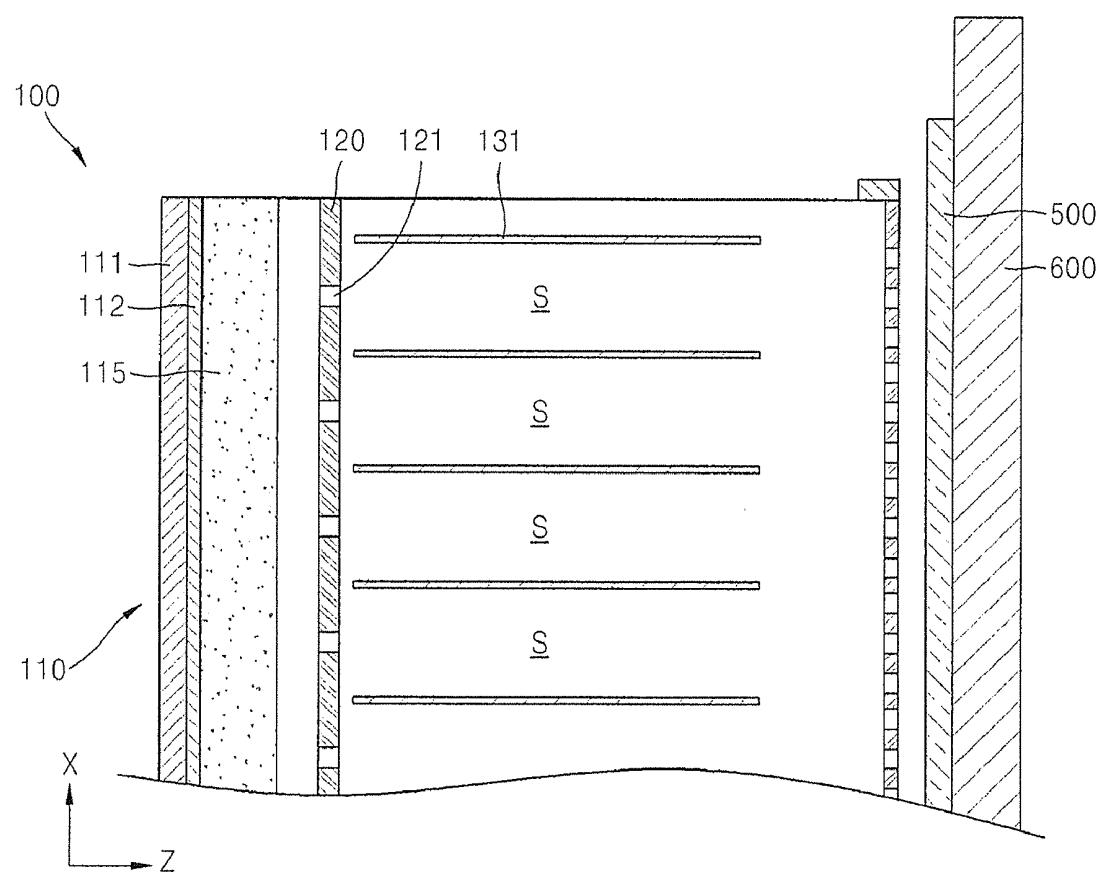


FIG. 9

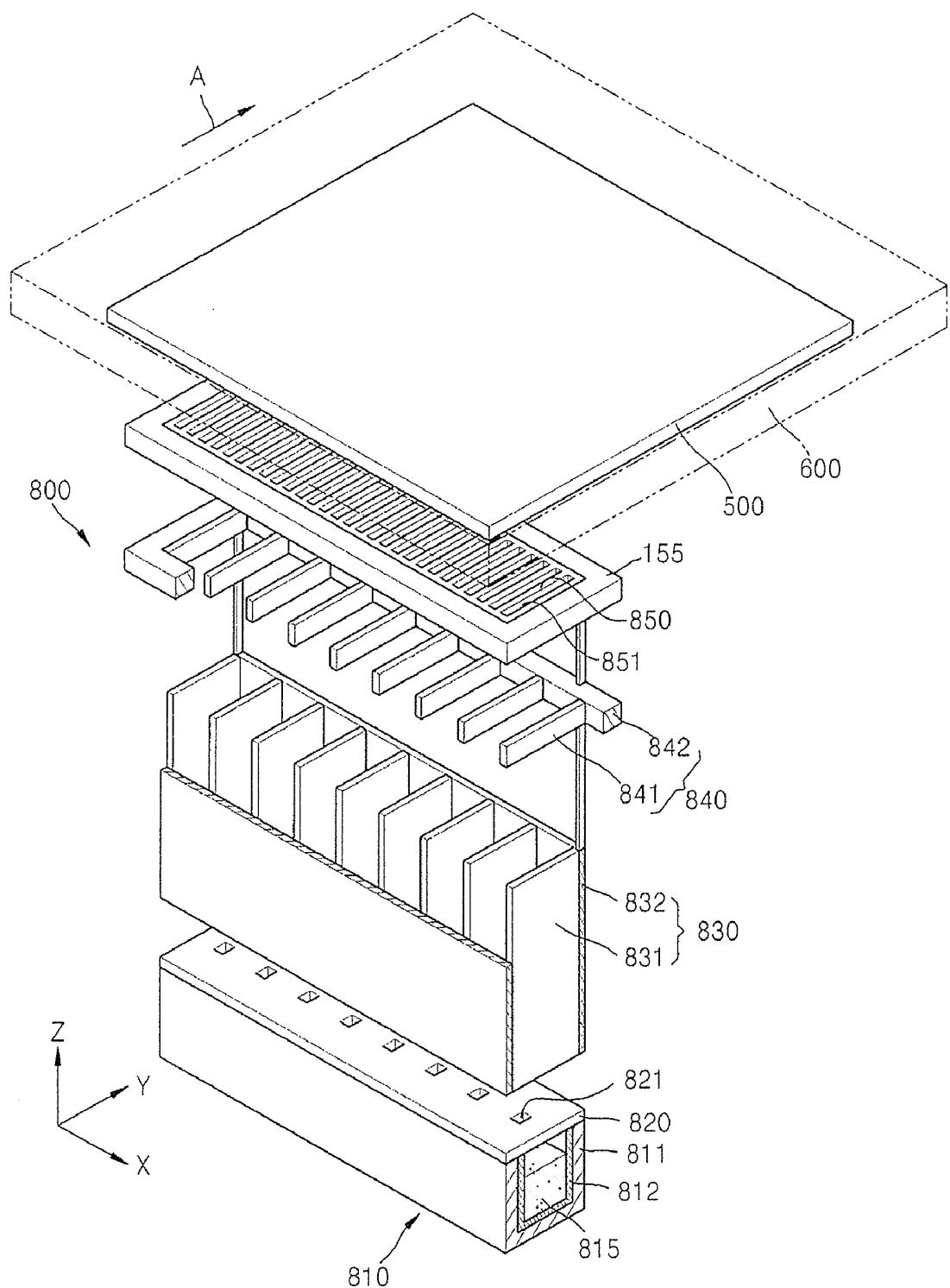


FIG. 10

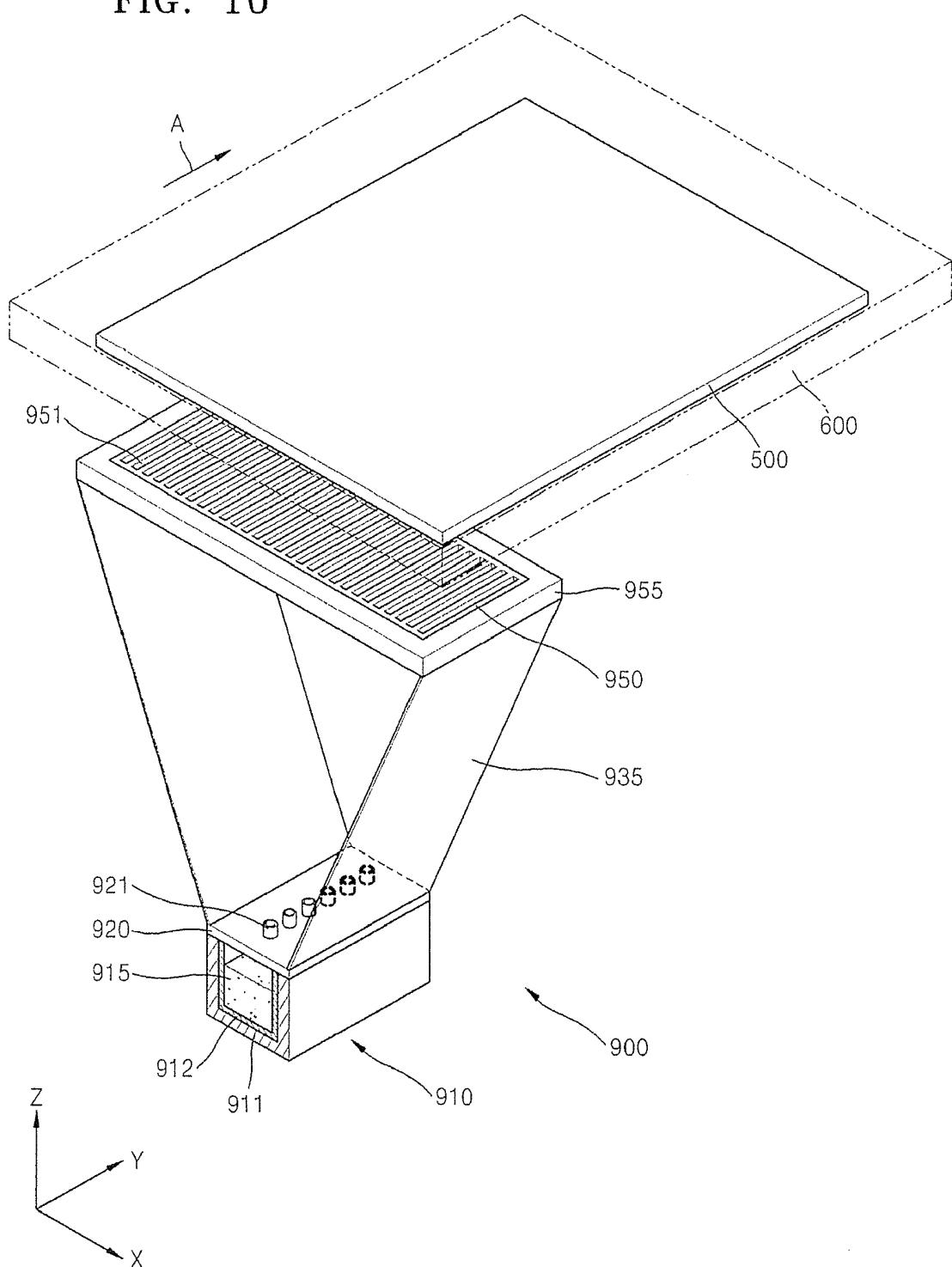


FIG. 11

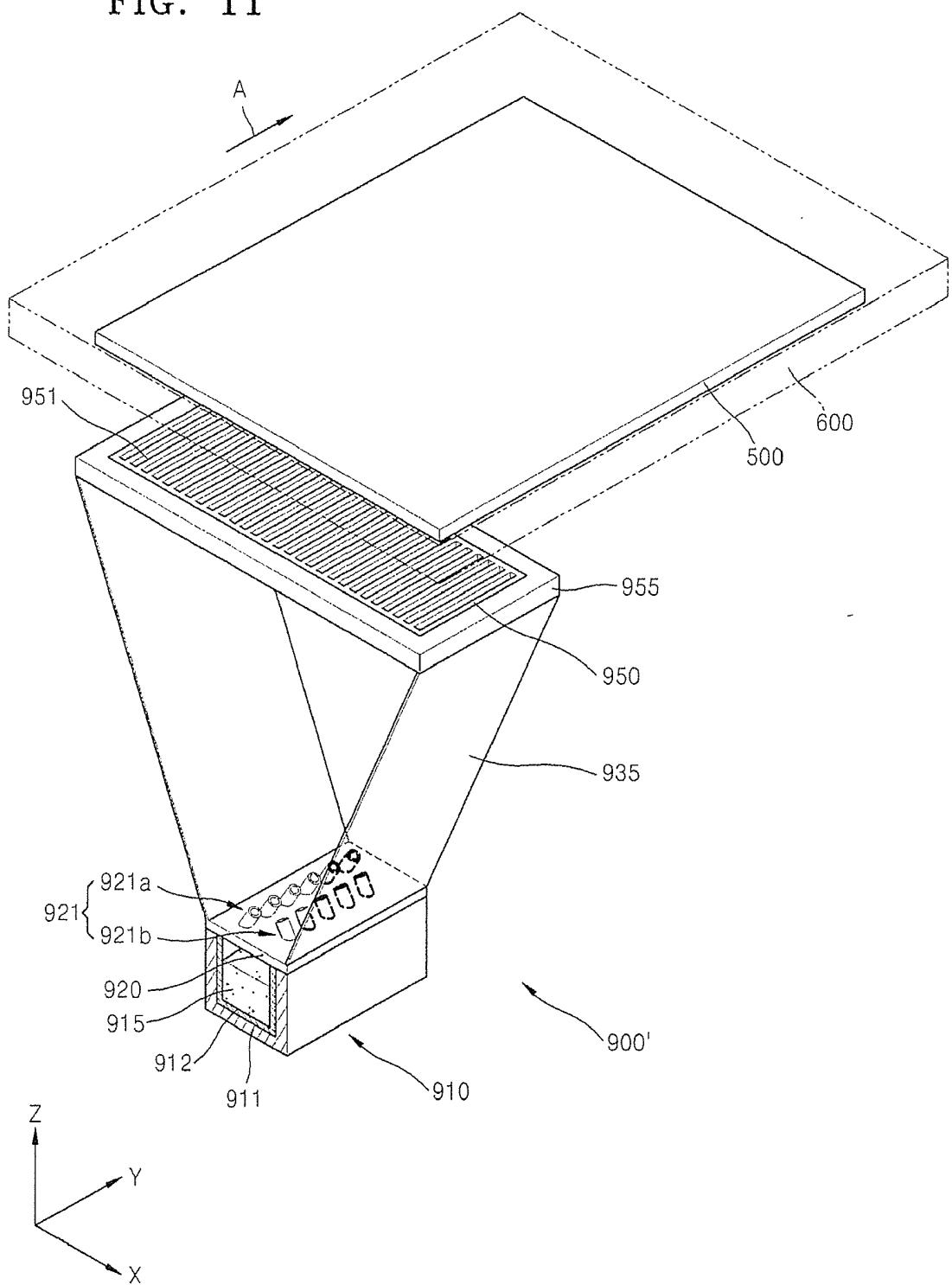


FIG. 12

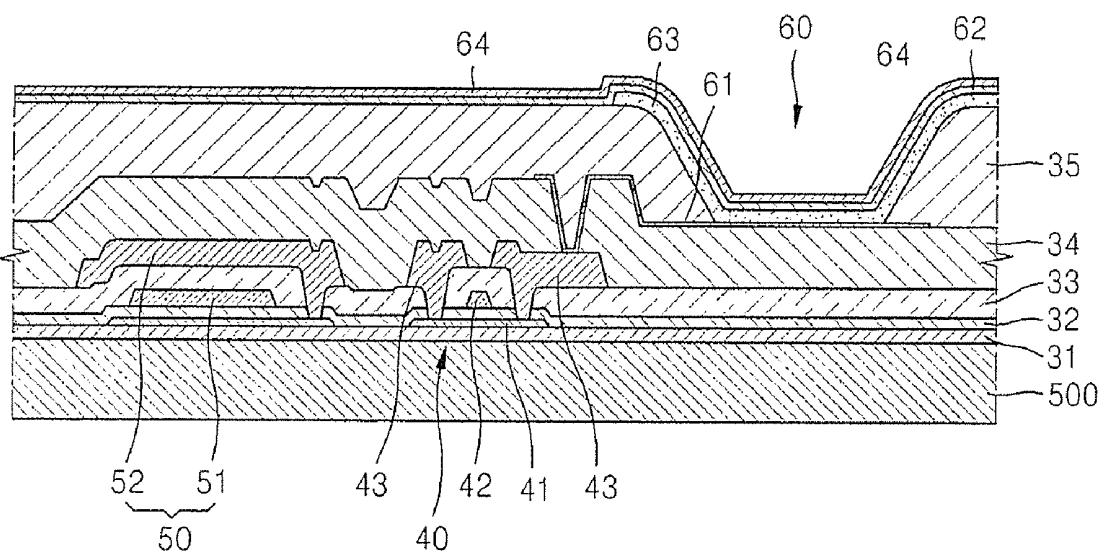


FIG. 13

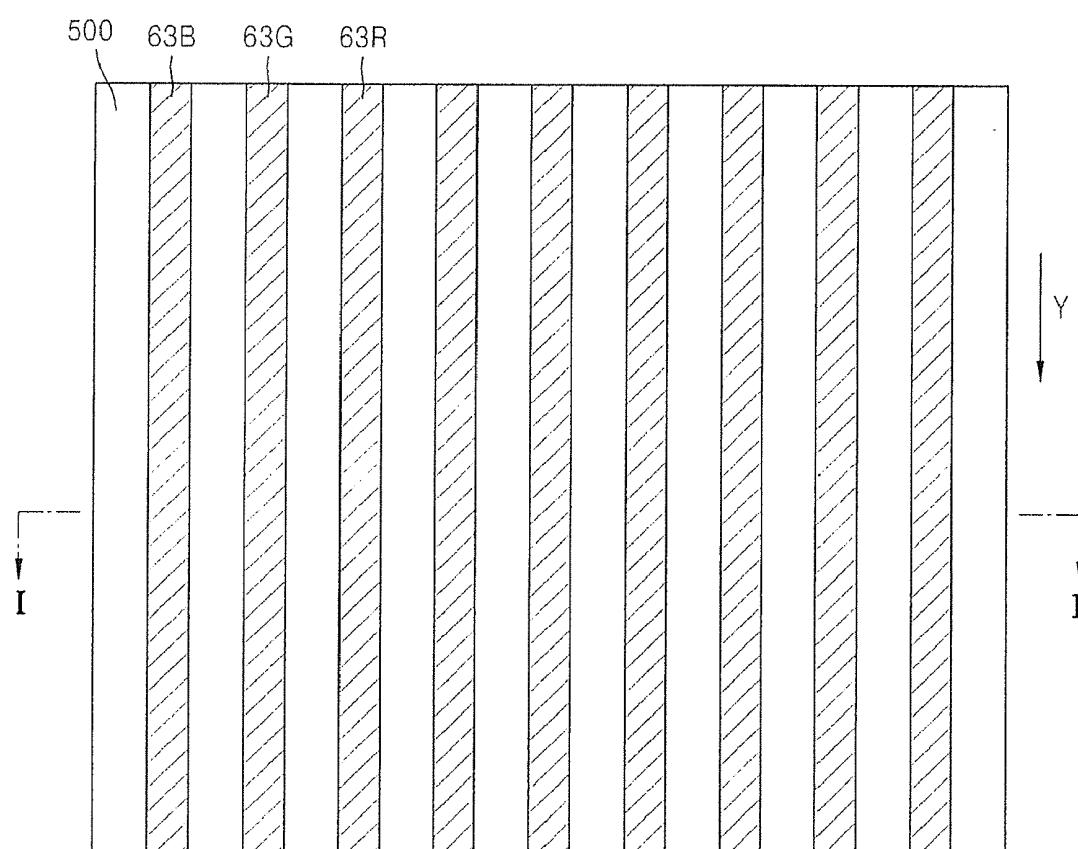
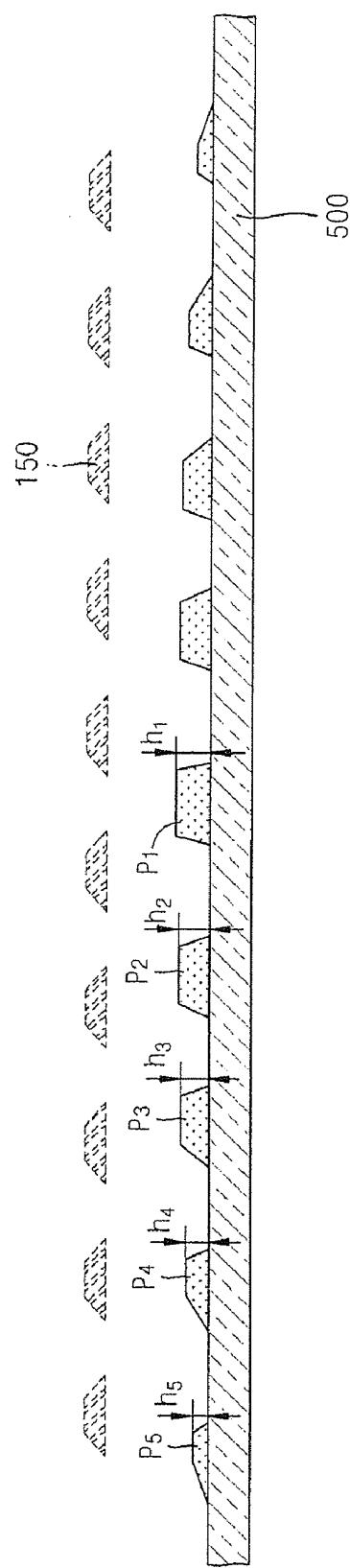



FIG. 14

**ORGANIC LAYER DEPOSITION APPARATUS
AND METHOD OF MANUFACTURING
ORGANIC LIGHT-EMITTING DISPLAY
DEVICE BY USING THE SAME****CROSS-REFERENCE TO RELATED PATENT
APPLICATION**

[0001] This application claims priority to and the benefit of Korean Patent Application No. 10-2011-0066124, filed on Jul. 4, 2011, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.

BACKGROUND**[0002] 1. Field**

[0003] Aspects of embodiments according to the present invention relate to an organic layer deposition apparatus and a method of manufacturing an organic light-emitting display device by using the same.

[0004] 2. Description of Related Art

[0005] Organic light-emitting display devices have a larger viewing angle, better contrast characteristics, and faster response speeds than other display devices, and thus have drawn attention as next-generation display devices.

[0006] Organic light-emitting display devices generally have a stacked structure including an anode, a cathode, and an emission layer interposed between the anode and the cathode. The devices display images in color when holes and electrons, injected respectively from the anode and the cathode, recombine in the emission layer to emit light. However, it is difficult to achieve a high light-emission efficiency with such a structure, and thus intermediate layers, including an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like may be additionally interposed between the emission layer and each of the electrodes.

SUMMARY

[0007] Aspects of embodiments according to the present invention are directed toward an organic layer deposition apparatus that may be easily manufactured, that may be applied to the manufacture of large-size display devices on a mass scale in a simple fashion, and that improves manufacturing yield and deposition efficiency, and a method of manufacturing an organic light-emitting display device by using the organic layer deposition apparatus.

[0008] According to an embodiment of the present invention, there is provided an organic layer deposition apparatus including: an electrostatic chuck for supporting a substrate; a deposition unit including a chamber for maintaining a vacuum and an organic layer deposition assembly for depositing at least one organic layer on the substrate supported by the electrostatic chuck; and a first conveyer unit passing through the chamber and for moving the electrostatic chuck supporting the substrate into the deposition unit, wherein the first conveyer unit includes a guide unit including a receiving member for supporting the electrostatic chuck to be movable in a direction while the electrostatic chuck is spaced apart from the first conveyer unit, and wherein the substrate is spaced apart from the organic layer deposition assembly, and the substrate or the organic layer deposition assembly is configured to be moved relative to the other during deposition.

[0009] In one embodiment, the organic layer deposition apparatus further includes: a loading unit for fixing the substrate to the electrostatic chuck; and an unloading unit for separating the substrate on which deposition has been completed from the electrostatic chuck. The first conveyer unit may be configured to sequentially move the electrostatic chuck to the loading unit, the deposition unit, and the unloading unit. The organic layer deposition apparatus may further include a second conveyer unit for returning the electrostatic chuck separated from the substrate, from the unloading unit to the loading unit.

[0010] In one embodiment, the guide unit includes: a driving unit for generating a driving force to move the electrostatic chuck; and a magnetic levitation bearing for levitating the electrostatic chuck above the receiving member to move without contacting the receiving member. The driving unit may include a linear motor. The linear motor may include a magnetic rail disposed at a side of the electrostatic chuck and a coil disposed in the receiving member. The magnetic levitation bearing may include a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck, and the driving unit may be disposed at a side of the electrostatic chuck. The magnetic levitation bearing may include a magnet selected from the group consisting of electromagnets, permanent magnets, superconducting magnets, and combinations thereof.

[0011] In one embodiment, the organic layer deposition apparatus further includes a gap sensor for measuring a gap interval between the receiving member and the electrostatic chuck. The organic layer deposition apparatus may further include a magnetic levitation bearing controlled by the gap sensor to provide a magnetic force for levitating the electrostatic chuck above the receiving member. The magnetic levitation bearing may include a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck. The guide sensor may include a first guide sensor for measuring a gap interval between the electrostatic chuck and the first conveyer unit along a first direction, and a second guide sensor for measuring a gap interval between the electrostatic chuck and the first conveyer unit along a second direction crossing the first direction.

[0012] In one embodiment, the organic layer deposition apparatus further includes: a first magnetic levitation bearing for levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a first direction; and a second magnetic levitation bearing for levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a second direction crossing the first direction.

[0013] In one embodiment, the receiving member includes a receiving groove for receiving the opposite sides of the electrostatic chucks.

[0014] In one embodiment, the organic layer deposition assembly includes a plurality of organic layer deposition assemblies disposed in the chamber.

[0015] In one embodiment, the chamber includes a first chamber and a second chamber interconnected with each other, and the organic layer deposition assembly includes a plurality of organic layer deposition assemblies disposed in each of the first and second chamber.

[0016] In one embodiment, the organic layer deposition assembly includes: a deposition source configured to discharge a deposition material; a deposition source nozzle unit

disposed at a side of the deposition source and including a plurality of deposition source nozzles; and a patterning slit sheet disposed to face and spaced apart from the deposition source nozzle unit, having a plurality of patterning slits, and being smaller than the substrate.

[0017] According to another embodiment of the present invention, there is provided an active matrix organic light-emitting display device including: the above substrate having a size of at least 40 inches; and the at least one organic layer on the substrate having a linear pattern formed using the above organic layer deposition apparatus.

[0018] In one embodiment, the at least one organic layer includes an emission layer (EML). The at least one organic layer may further include a layer selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), an electron injection layer (EIL), and combinations thereof.

[0019] In one embodiment, the at least one organic layer has a non-uniform thickness.

[0020] According to another embodiment of the present invention, there is provided an active matrix organic light-emitting display device including: the at least one organic layer having a non-uniform thickness formed using the above organic layer deposition apparatus.

[0021] According to another embodiment of the present invention, there is provided a method of manufacturing an organic light-emitting display device, the method including: supporting a substrate with an electrostatic chuck; conveying the electrostatic chuck supporting the substrate into a chamber maintained at a vacuum by using a first conveyer unit passing through the chamber; and depositing at least one organic layer on the substrate by using an organic layer deposition assembly disposed in the chamber while the substrate or the organic layer deposition assembly moves relative to the other, wherein the electrostatic chuck is moved with the first conveyer unit in the chamber while spaced apart from the first conveyer unit, and wherein the substrate is spaced apart from the organic layer deposition assembly.

[0022] In one embodiment, the conveying of the electrostatic chuck includes levitating the electrostatic chuck to be spaced apart from the first conveyer unit. The conveying of the electrostatic chuck may include: generating a driving force by a driving unit to move the electrostatic chuck; and levitating the electrostatic chuck to move without contacting the first conveyer unit by a magnetic levitation bearing.

[0023] In one embodiment, the conveying of the electrostatic chuck includes measuring a gap interval between the first conveyer unit and the electrostatic chuck by a gap sensor (621, 622). The conveying of the electrostatic chuck may include: controlling a magnetic levitation bearing by the gap sensor to provide a magnetic force; and levitating the electrostatic chuck to move without contacting the first conveyer unit by the magnetic force. The magnetic levitation bearing may include a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck. The measuring of the gap interval may include: measuring a gap interval between the electrostatic chuck and the first conveyer unit along a first direction by a first guide sensor; and measuring a gap interval between the electrostatic chuck and the first conveyer unit along a second direction crossing the first direction by a second guide sensor. The levitating of the electrostatic chuck to move without contacting the first conveyer unit by the magnetic force may include: levitating the electrostatic

chuck to be spaced apart from the first conveyer unit along a first direction by a first magnetic levitation bearing; and levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a second direction crossing the first direction by a second magnetic levitation bearing.

[0024] In one embodiment, the method further includes, after the depositing of the organic layer: removing the substrate on which the deposition has been completed out of the chamber by using the first conveyer unit; separating the substrate from the electrostatic chuck; and returning the electrostatic chuck separated from the substrate to support another substrate with the electrostatic chuck by using a second conveyer unit disposed outside the chamber.

[0025] In one embodiment, the deposition assembly includes a plurality of organic layer deposition assemblies disposed in the chamber, and the depositing is performed by using the plurality of organic layer deposition assemblies in sequence.

[0026] In one embodiment, the chamber includes a first chamber and a second chamber interconnected with each other, and the organic layer deposition assembly includes a plurality of organic layer deposition assemblies disposed in each of the first and second chambers, wherein the depositing is continuously performed with the substrate moving between the first chamber and the second chamber.

[0027] In one embodiment, the organic layer deposition assembly includes: a deposition source configured to discharge a deposition material; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles; and a patterning slit sheet disposed to face and spaced apart from the deposition source nozzle unit, having a plurality of patterning slits, and being smaller than the substrate.

[0028] In one embodiment, the first conveyer unit includes: a guide unit including a receiving member for supporting the electrostatic chuck to be movable in a direction; a linear motor for generating a driving force to move the electrostatic chuck; and a magnetic levitation bearing for levitating the electrostatic chuck to be spaced apart from the receiving member. The linear motor may include a magnetic rail disposed at a side of the electrostatic chuck and a coil disposed in the receiving member. The magnetic levitation bearing may include a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck, and the driving unit is disposed at a side of the electrostatic chuck.

[0029] According to another embodiment of the present invention, there is provided an active matrix organic light-emitting display device including: the substrate having a size of at least 40 inches; and the at least one organic layer on the substrate having a linear pattern formed using the above method.

[0030] According to another embodiment of the present invention, there is provided an active matrix organic light-emitting display device including: the at least one organic layer having a non-uniform thickness formed using the above method.

BRIEF DESCRIPTION OF THE DRAWING

[0031] The above and other features and aspects of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawing in which:

[0032] FIG. 1 is a schematic structure diagram of an organic layer deposition apparatus according to an embodiment of the present invention;

[0033] FIG. 2 is a structure diagram of a modified example of the organic layer deposition apparatus of FIG. 1;

[0034] FIG. 3 is a view of an example of an electrostatic chuck;

[0035] FIG. 4 is a cross-sectional view of a first conveyer unit according to an embodiment of the present invention;

[0036] FIG. 5 is a cross-sectional view of a second conveyer unit according to an embodiment of the present invention;

[0037] FIG. 6 is a schematic perspective cutaway view of an organic layer deposition assembly of the organic layer deposition apparatus of FIG. 1, according to an embodiment of the present invention;

[0038] FIG. 7 is a schematic sectional side view of the organic layer deposition assembly of FIG. 6, according to an embodiment of the present invention;

[0039] FIG. 8 is a schematic sectional view in an XZ plane of the organic layer deposition assembly of FIG. 6, according to an embodiment of the present invention;

[0040] FIG. 9 is a schematic perspective cutaway view of an organic layer deposition assembly according to another embodiment of the present invention;

[0041] FIG. 10 is a schematic perspective view of an organic layer deposition assembly according to another embodiment of the present invention;

[0042] FIG. 11 is a schematic perspective view of an organic layer deposition assembly according to another embodiment of the present invention; and

[0043] FIG. 12 is a cross-sectional view of an active matrix organic light-emitting display device fabricated by using an organic layer deposition apparatus, according to an embodiment of the present invention.

[0044] FIG. 13 is a plan view of one or more organic layers on a substrate, according to an embodiment of the present invention.

[0045] FIG. 14 is a cross-sectional view of the one or more layers on the substrate taken along line I-I of FIG. 13, according to an embodiment of the present invention.

DETAILED DESCRIPTION

[0046] Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

[0047] FIG. 1 is a schematic structure view of an organic layer deposition apparatus according to an embodiment of the present invention. FIG. 2 illustrates a modified example of the organic layer deposition apparatus of FIG. 1. FIG. 3 is a view of an example of an electrostatic chuck 600.

[0048] Referring to FIG. 1, the organic layer deposition apparatus according to the current embodiment includes a loading unit 710, a deposition unit 730, an unloading unit 720, a first conveyer unit 610, and a second conveyer unit 620.

[0049] The loading unit 710 may include a first rack 712, a transport robot 714, a transport chamber 716, and a first inversion chamber 718.

[0050] A plurality of substrates 500 onto which a deposition material is not applied are stacked up on the first rack 712.

The transport robot 714 picks up one of the substrates 500 from the first rack 712, disposes it on the electrostatic chuck 600 transferred by the second conveyor unit 620, and moves the electrostatic chuck 600 on which the substrate 500 is disposed into the transport chamber 716.

[0051] The first inversion chamber 718 is disposed adjacent to the transport chamber 716. The first inversion chamber 718 includes a first inversion robot 719 that inverts the electrostatic chuck 600 and then loads it onto the first conveyer unit 610 of the deposition unit 730.

[0052] Referring to FIG. 3, the electrostatic chuck 600 may include an electrode 602 embedded in a main body 601 of the electrostatic chuck 600. Here, the main body 601 is formed of ceramic, and the electrode 602 is supplied with power. The electrostatic chuck 600 may fix the substrate 500 on a surface of the main body 601 as a high voltage is applied to the electrode 602.

[0053] Referring back to FIG. 1, the transport robot 714 places one of the substrates 500 on the surface of the electrostatic chuck 600, and the electrostatic chuck 600 on which the substrate 500 is disposed is loaded into the transport chamber 716. The first inversion robot 719 inverts the electrostatic chuck 600 so that the substrate 500 is turned upside down in the deposition unit 730.

[0054] The unloading unit 720 is constituted to operate in an opposite manner to the loading unit 710 described above. Specifically, a second inversion robot 729 in a second inversion chamber 728 inverts the electrostatic chuck 600, which has passed through the deposition unit 730 while the substrate 500 is disposed on the electrostatic chuck 600, and then moves the electrostatic chuck 600 on which the substrate 500 is disposed into an ejection chamber 726. Then, an ejection robot 724 removes the electrostatic chuck 600 on which the substrate 500 is disposed from the ejection chamber 726, separates the substrate 500 from the electrostatic chuck 600, and then loads the substrate 500 onto the second rack 722. The electrostatic chuck 600 separated from the substrate 500 is returned back into the loading unit 710 via the second conveyer unit 620.

[0055] However, the present invention is not limited to the above description. For example, when disposing the substrate 500 on the electrostatic chuck 600, the substrate 500 may be fixed onto a bottom surface of the electrostatic chuck 600 and then moved into the deposition unit 730. In this case, for example, the first inversion chamber 718 and the first inversion robot 719, and the second inversion chamber 728 and the second inversion robot 729 are not used.

[0056] The deposition unit 730 may include at least one deposition chamber. As illustrated in FIG. 1, the deposition unit 730 may include a first chamber 731. In the embodiment illustrated in FIG. 1, first to four organic layer deposition assemblies 100, 200, 300, and 400 may be disposed in the first chamber 731. Although FIG. 1 illustrates that a total of four organic layer deposition assemblies, i.e., the first to fourth organic layer deposition assemblies 100 to 400, are installed in the first chamber 731, the total number of organic layer deposition assemblies that may be installed in the first chamber 731 may vary according to the deposition material and deposition conditions. The first chamber 731 is maintained in a vacuum state during a deposition process.

[0057] In the organic layer deposition apparatus illustrated in FIG. 2, a deposition unit 730 may include the first chamber 731 and a second chamber 732 that are connected to each other. In the embodiment illustrated in FIG. 2, the first and

second organic layer deposition assemblies **100** and **200** may be disposed in the first chamber **731**, and the third and fourth organic layer deposition assemblies **300** and **400** may be disposed in the second chamber **732**. In other embodiments, the organic layer deposition system may include more than two chambers.

[0058] In the embodiment illustrated in FIG. 1, the electrostatic chuck **600** on which the substrate **500** is disposed may be moved at least to the deposition unit **730** or may be moved sequentially to the loading unit **710**, the deposition unit **730**, and the unloading unit **720**, by the first conveyor unit **610**. The electrostatic chuck **600** that is separated from the substrate **500** in the unloading unit **720** is moved back to the loading unit **710** by the second conveyor unit **620**.

[0059] FIG. 4 is a cross-sectional view of the first conveyor unit **610**, according to an embodiment of the present invention.

[0060] The first conveyor unit **610** moves the electrostatic chuck **600** that is fixedly supporting the substrate. The first conveyor unit **610** may include a frame **611**, a lower plate **613**, a first guide unit **614**, and a sheet support **615**.

[0061] The frame **611** forms a base of the first conveyor unit **610**. The frame **611** may be substantially in the form of an empty box. The lower plate **613** forms a lower side of the frame **611**. A deposition source **10** may be disposed on the lower plate **613**. The frame **611** and the lower plate **613** may be formed as separate units, which may then be combined together. In one embodiment, the frame **611** and the lower plate **613** are integrally (originally) formed as one body.

[0062] Although not illustrated, the lower plate **613** with the deposition source **10** thereon may be formed as a cassette-like structure to be withdrawn out of the frame **611**, which may facilitate replacement of the deposition source **10**.

[0063] The sheet support **615** may be formed to protrude from an inner sidewall of the frame **611**. The sheet support **615** may support the patterning slit sheet **150**. The sheet support **615** may guide a deposition material discharged through deposition source nozzles to move straight, and not to flow in the X-axis direction.

[0064] The first guide unit **614** may be disposed on the frame **611**, and may guide the electrostatic chuck **600** to move in a direction. The first guide unit **614** is disposed to pass through the first chamber **731** of the deposition unit **730**.

[0065] The first guide unit **614** receives the opposite edges of the electrostatic chuck **600** to guide the movement of the electrostatic chuck **600**. The first guide unit **614** may include a first receiving member **614a** and a second receiving member **614b** respectively disposed under and above the electrostatic chuck **600**, and a connection member **614c** connecting the first receiving member **614a** and the second receiving member **614b**. The first receiving member **614a**, the second receiving member **614b**, and the connection member **614c** define a receiving groove **614d** together. One side of the electrostatic chuck **600** is accommodated in the receiving groove **614d** and is moved along the receiving groove **614d**.

[0066] A driving unit **616** is disposed at a side of the connection member **614c** in the receiving groove **614d** to correspond to one side of the electrostatic chuck **600**, and a side magnetic levitation bearing **618** is disposed to correspond to the other side of the electrostatic chuck **600** opposite to (facing oppositely way from) the driving unit **616**. In one embodiment, the side magnetic levitation bearing **618** includes a

magnet selected from the group consisting of electromagnets, permanent magnets, superconducting magnets, and combinations thereof.

[0067] Here, the driving unit **616** may be a linear motor. Linear motors have a low friction coefficient relative to existing sliding guide systems and a very high level of position spotting with almost no positional error. A linear motor acting as the driving unit **616** may include a coil **616a** and a magnetic rail **616b**. The coil **616a** is disposed on one side of the connection member **614c** of the first guide unit **614**, and the magnetic rail **616b** is disposed at a side of the electrostatic chuck **600** to correspond to the coil **616a**. Since the magnetic rail **616b**, not the coil **616a**, is disposed on the moving electrostatic chuck **600**, the electrostatic chuck **600** may be driven without applying power.

[0068] The side magnetic levitation bearing **618** is disposed at (on) the connection member **614c** of the first guide unit **614** to correspond to the other side of the electrostatic chuck **600** opposite to the driving unit **616**. The side magnetic levitation bearing **618** provides a gap between the electrostatic chuck **600** and the first guide unit **614**, thereby allowing the electrostatic chuck **600** to move not in contact with and along the first guide unit **614**.

[0069] An upper (top) magnetic levitation bearing **617** may be disposed at (on) the second receiving member **614b** to be above the electrostatic chuck **600**. The upper magnetic levitation bearing **617** enables the electrostatic chuck **600** to move along the first guide unit **614** not to contact the first receiving member **614a** and the second receiving member **614b** with a constant interval therefrom. Although not illustrated, a magnetic levitation bearing may be disposed at (on) the first receiving member **614a** to correspond to a bottom side of the electrostatic chuck **600**. In one embodiment, the upper magnetic levitation bearing **617** includes a magnet selected from the group consisting of electromagnets, permanent magnets, superconducting magnets, and combinations thereof.

[0070] The first guide unit **614** may further include a gap sensor **621**. The gap sensor **621** may measure a gap between the electrostatic chuck **600** and the first guide unit **614**. Referring to FIG. 4, the gap sensor **621** may be disposed at (on) the first receiving member **614a** to correspond to a bottom side of the electrostatic chuck **600**. The gap sensor **621** at (on) the first receiving member **614a** may measure a gap between the first receiving member **614a** and the electrostatic chuck **600**. A gap sensor **622** may be disposed on the side magnetic levitation bearing **618**. The gap sensor **622** disposed on the side magnetic levitation bearing **618** may measure a gap between a side of the electrostatic chuck **600** and the side magnetic levitation bearing **618**. However, aspects of the present invention are not limited thereto. The gap sensor **622** may be disposed on the connection member **614c**.

[0071] Magnetic forces of the upper and side magnetic levitation bearings **617** and **618** are changed according to the gaps measured by the gap sensors **621** and **622**, thereby adjusting in real time a gap between the electrostatic chuck **600** and the first guide unit **614**. The electrostatic chuck **600** may be precisely moved by a feedback control using the upper (top) and side magnetic levitation bearings **617** and **618** and the gap sensors **621** and **622**.

[0072] FIG. 5 is a cross-sectional view of the second conveyor unit **620**, according to an embodiment of the present invention.

[0073] The second conveyer unit 620 may include a second guide unit 634 for moving the electrostatic chuck 600 from which the substrate 500 has been removed.

[0074] The second guide unit 634 may include a first receiving member 614a, a second receiving member 614b, and a connection member 614c. The electrostatic chuck 600 is accommodated in receiving grooves 614d defined by the first receiving member 614a, the second receiving member 614b, and the connection member 614c, and is moved along the receiving grooves 614d.

[0075] The driving unit 616 is disposed at (on) the connection member 614c to correspond to one side of the electrostatic chuck 600. The driving unit 616 generates a driving force for moving the electrostatic chuck 600 along the second guide unit 634. The driving unit 616 may be a linear motor, which may include a coil 616a disposed on the connection member 614c and a magnetic rail 616b disposed on one side of the electrostatic chuck 600 to correspond to the coil 616a.

[0076] The side magnetic levitation bearing 618 is disposed at (on) the connection member 614c of the first guide unit 614 to correspond to the other side of the electrostatic chuck 600 opposite to the driving unit 616. The upper magnetic levitation bearing 617 may be disposed at (on) the second receiving member 614b to be above the electrostatic chuck 600. The upper (top) and side magnetic levitation bearings 617 and 618 provide a gap between the electrostatic chuck 600 and the first guide unit 614, thereby allowing the electrostatic chuck 600 to move not in contact with and along the first guide unit 614.

[0077] The second conveyer unit 620 may further include gap sensors 621 and 622 for measuring a gap between the electrostatic chuck 600 and the second guide unit 634. The gap sensor 621 may be disposed at (on) the first receiving member 614a to correspond to a bottom side of the electrostatic chuck 600. The gap sensor 622 may be disposed on the side magnetic levitation bearing 618 to correspond to a side of the electrostatic chuck 600.

[0078] Hereinafter, an embodiment of the organic layer deposition assembly 100 of the organic layer deposition apparatus described above will be described. FIG. 6 is a schematic perspective cutaway view of the organic layer deposition assembly 100 of the organic layer deposition apparatus of FIG. 1, FIG. 7 is a cross-sectional side view of the organic layer deposition assembly 100 illustrated in FIG. 6, and FIG. 8 is a cross-sectional plan view of the organic layer deposition assembly 100 illustrated in FIG. 6.

[0079] Referring to FIGS. 6 to 8, the organic layer deposition assembly 100 according to the current embodiment of the present invention includes a deposition source 110, a deposition source nozzle unit 120, a barrier plate assembly 130, and a patterning slit sheet 150.

[0080] Although a chamber is not illustrated in FIGS. 6 to 8 for convenience of explanation, all the components of the organic layer deposition assembly 100 may be disposed within a chamber that is maintained at an appropriate degree of vacuum. The chamber is maintained at an appropriate vacuum in order to allow a deposition material to move substantially in a straight line in the organic layer deposition assembly 100.

[0081] In the chamber 731 of FIG. 1 in which the organic layer deposition assembly 100 is disposed, the substrate 500, which constitutes a deposition target on which the deposition material 115 is to be deposited, is transferred by the electrostatic chuck 600. The substrate 500 may be a substrate for flat

panel displays. A large substrate, such as a mother glass, for manufacturing a plurality of flat panel displays, may be used as the substrate 500.

[0082] In an embodiment, the substrate 500 or the organic layer deposition assembly 100 may be moved relative to the other. For example, as illustrated in FIG. 6, the substrate 500 may be moved in a direction of an arrow A, relative to the organic layer deposition assembly 100.

[0083] In a conventional deposition method using a fine metal mask (FMM), the size of the FMM is greater than or equal to the size of a substrate. Thus, the size of the FMM has to be increased when performing deposition on a larger substrate. However, it is difficult to manufacture a large FMM and to extend an FMM to be accurately aligned with a pattern.

[0084] To overcome this problem, in the organic layer deposition assembly 100 according to the current embodiment of the present invention, deposition may be performed while the organic layer deposition assembly 100 or the substrate 500 is moved relative to the other. In other words, deposition may be continuously performed while the substrate 500, which is disposed such as to face the organic layer deposition assembly 100, is moved in a Y-axis direction. In other words, the deposition is performed in a scanning manner while the substrate 500 is moved in a direction of arrow A in FIG. 6. Although the substrate 500 is illustrated as being moved in the Y-axis direction in FIG. 6 in the chamber 731 (FIG. 1) when deposition is performed, the present invention is not limited thereto. Deposition may be performed while the organic layer deposition assembly 100 is moved in the Y-axis direction, while the substrate 500 is fixed.

[0085] Thus, in the organic layer deposition assembly 100 according to the current embodiment of the present invention, the patterning slit sheet 150 may be significantly smaller than an FMM used in a conventional deposition method. In other words, in the organic layer deposition assembly 100, deposition is continuously performed, i.e., in a scanning manner while the substrate 500 is moved in the Y-axis direction. Thus, a length of the patterning slit sheet 150 in the Y-axis direction may be significantly less than a length of the substrate 500 in the Y-axis direction. Here, a width of the patterning slit sheet 150 in the X-axis direction and a width of the substrate 500 in the X-axis direction are substantially equal to each other. However, even when the width of the patterning slit sheet 150 in the X-axis direction is less than the width of the substrate 500 in the X-axis direction, deposition may be performed on the entire substrate 500 in a scanning manner while the substrate 500 or the organic layer deposition assembly 100 is moved relative to the other.

[0086] As described above, since the patterning slit sheet 150 may be formed to be significantly smaller than an FMM used in a conventional deposition method, it is relatively easy to manufacture the patterning slit sheet 150 used in the present invention. In other words, using the patterning slit sheet 150, which is smaller than an FMM used in a conventional deposition method, is more convenient in all processes, including etching and other subsequent processes, such as precise extension, welding, moving, and cleaning processes, compared to the conventional deposition method using the larger FMM. This is more advantageous for manufacturing a relatively large display device.

[0087] In order to perform deposition while the organic layer deposition assembly 100 or the substrate 500 is moved relative to the other as described above, the organic layer deposition assembly 100 and the substrate 500 may be sepa-

rated from each other by a set or predetermined distance. This will be described later in more detail.

[0088] The deposition source 110 that contains and heats the deposition material 115 is disposed at (on) an opposite side of the chamber to a side at (on) which the substrate 500 is disposed.

[0089] The deposition source 110 includes a crucible 112 that is filled with the deposition material 115, and a cooling block 111 surrounding the crucible 112. The cooling block 111 reduces or prevents radiation of heat from the crucible 112 to the outside, i.e., into the chamber (e.g., the chamber 731 and/or the chamber 732). The cooling block 111 may include a heater that heats the crucible 112.

[0090] The deposition source nozzle unit 120 is disposed at a side of the deposition source 110, and in particular, at the side of the deposition source 110 facing the substrate 500. The deposition source nozzle unit 120 includes a plurality of deposition source nozzles 121 arranged at equal intervals in the X-axis direction. The deposition material 115 that is vaporized in the deposition source 110 passes through the deposition source nozzles 121 of the deposition source nozzle unit 120 towards the substrate 500, which is a deposition target on which the deposition material 115 is to be deposited.

[0091] The barrier plate assembly 130 is disposed at a side of the deposition source nozzle unit 120. The barrier plate assembly 130 includes a plurality of barrier plates 131, and a barrier plate frame 132 that covers sides of the barrier plates 131. The plurality of barrier plates 131 may be arranged parallel to each other at equal intervals in the X-axis direction. In addition, each of the barrier plates 131 may be arranged parallel to an YZ plane in FIG. 4, and may have a rectangular shape. The plurality of barrier plates 131 arranged as described above, partition the space between the deposition source nozzle unit 120 and the patterning slit sheet 150 into a plurality of sub-deposition spaces S (see FIG. 8). In the organic layer deposition assembly 100 according to the current embodiment of the present invention, as illustrated in FIG. 5, the deposition space is divided by the barrier plates 131 into the sub-deposition spaces S that respectively correspond to the deposition source nozzles 121 through which the deposition material 115 is discharged.

[0092] The barrier plates 131 may be respectively disposed between adjacent deposition source nozzles 121. In other words, each of the deposition source nozzles 121 may be disposed between two adjacent barrier plates 131. The deposition source nozzles 121 may be respectively located at the midpoint between two adjacent barrier plates 131. However, the present invention is not limited to this structure. For example, a plurality of deposition source nozzles 121 may be disposed between two adjacent barrier plates 131. In this case, the deposition source nozzles 121 may be also respectively located at the midpoint between two adjacent barrier plates 131.

[0093] As described above, since the barrier plates 131 partition the space between the deposition source nozzle unit 120 and the patterning slit sheet 150 into the plurality of sub-deposition spaces S, the deposition material 115 discharged through each of the deposition source nozzles 121 is not mixed with the deposition material 115 discharged through the other deposition source nozzles slits 121, and passes through the patterning slits 151 so as to be deposited on the substrate 500. In other words, the barrier plates 131 guide

the deposition material 115, which is discharged through the deposition source nozzles slits 121, to move straight, i.e., to flow in the Z-axis direction.

[0094] As described above, the deposition material 115 is forced or guided to move straight by installing the barrier plates 131, so that a smaller shadow zone may be formed on the substrate 500, compared to a case where no barrier plates are installed. Thus, the organic layer deposition assembly 100 and the substrate 500 may be separated from each other by a set or predetermined distance, as will be described later in detail. This will be described later in detail.

[0095] The patterning slit sheet 150 and a frame 155 in which the patterning slit sheet 150 is bound are disposed between the deposition source 110 and the substrate 500. The frame 155 may be formed to have a lattice shape, similar to a window frame. The patterning slit sheet 150 includes a plurality of patterning slits 151 arranged in the X-axis direction. The patterning slits 151 extend in the Y-axis direction. The deposition material 115 that has been vaporized in the deposition source 110 and passed through the deposition source nozzle 121, passes through the patterning slits 151 towards the substrate 500.

[0096] The patterning slit sheet 150 may be formed of a metal thin film. The patterning slit sheet 150 is fixed to the frame 155 such that a tensile force is exerted thereon. The patterning slits 151 may be formed by etching the patterning slit sheet 150 to have a stripe pattern. The number of patterning slits 151 may be equal to the number of deposition patterns to be formed on the substrate 500.

[0097] In addition, the barrier plate assembly 130 and the patterning slit sheet 150 may be disposed to be separated from each other by a set or predetermined distance. Alternatively, the barrier plate assembly 130 and the patterning slit sheet 150 may be connected by (via) a connection member 135.

[0098] As described above, the organic layer deposition assembly 100 according to the current embodiment of the present invention performs deposition while being moved relative to the substrate 500. In order to move the organic layer deposition assembly 100 relative to the substrate 500, the patterning slit sheet 150 may be spaced apart from the substrate 500 by a set or predetermined distance. In addition, to prevent the formation of a relatively large shadow zone on the substrate 500 when the patterning slit sheet 150 and the substrate 500 are spaced apart from each other, the barrier plates 131 are arranged between the deposition source nozzle unit 120 and the patterning slit sheet 150 to force or guide the deposition material 115 to move in a straight direction. Thus, the size of the shadow zone that may be formed on the substrate 500 is sharply reduced.

[0099] In a typical deposition method using an FMM, deposition is performed with the FMM in close contact with a substrate in order to prevent formation of a shadow zone on the substrate. However, when the FMM is used in close contact with the substrate, the contact may cause defects, such as scratches on patterns formed on the substrate. In addition, in the typical deposition method, the size of the mask has to be the same as the size of the substrate since the mask may not be moved relative to the substrate. Thus, the size of the mask has to be increased as display devices become larger. However, it is not easy to manufacture such a large mask.

[0100] In order to overcome this and/or other problems, in the organic layer deposition assembly 100 according to the current embodiment of the present invention, the patterning slit sheet 150 is disposed to be spaced apart from the substrate

500 by a set or predetermined distance, which may be facilitated by installing the barrier plates **131** to reduce the size of the shadow zone formed on the substrate **500**. Shadow zones on the substrate **500** may be reduced or minimized by installing the barrier plates **131**.

[0101] Thin films such as organic layers (refer to the organic layer **63** in FIG. 10) of an organic light-emitting display device may be formed using any suitable organic layer deposition apparatus having the structure described above.

[0102] FIG. 9 is a schematic perspective cutaway view of an organic layer deposition assembly **800** according to another embodiment of the present invention.

[0103] Referring to FIG. 9, the organic layer deposition assembly **800** according to the current embodiment of the present invention includes a deposition source **810**, a deposition source nozzle unit **820**, a first barrier plate assembly **830**, a second barrier plate assembly **840**, and a patterning slit sheet **850**. Structures of the deposition source **810**, the first barrier plate assembly **830**, and the patterning slit sheet **850** are the same as those in the embodiment described with reference to FIG. 6, and thus a detailed description thereof will not be provided here. The current embodiment differs from the previous embodiment in that the second barrier plate assembly **840** is disposed at a side of the first barrier plate assembly **830**.

[0104] The second barrier plate assembly **840** includes a plurality of second barrier plates **841**, and a second barrier plate frame **841** that covers sides of the second barrier plates **842**. The plurality of second barrier plates **841** may be arranged parallel to each other at equal intervals in the X-axis direction. In addition, each of the second barrier plates **841** may be formed to extend parallel to the YZ plane in FIG. 10, i.e., perpendicular to the X-axis direction.

[0105] The plurality of first barrier plates **831** and second barrier plates **841** arranged as described above, partition the space between the deposition source nozzle unit **820** and the patterning slit sheet **850**. The deposition space is divided by the first barrier plates **831** and the second barrier plates **841** into sub-deposition spaces that respectively correspond to the deposition source nozzles **821** through which the deposition material **115** is discharged.

[0106] The second barrier plates **841** may be disposed to correspond respectively to the first barrier plates **831**. In other words, the second barrier plates **841** may be respectively disposed to be parallel to and to be on the same plane as the first barrier plates **831**. Each pair of the corresponding first and second barrier plates **831** and **841** may be located on the same plane. Although the first barrier plates **831** and the second barrier plates **841** are respectively illustrated as having the same thickness in the X-axis direction, aspects of the present invention are not limited thereto. In other words, the second barrier plates **841**, which need to be accurately aligned with the patterning slits **851**, may be formed to be relatively thin, whereas the first barrier plates **831**, which do not need to be precisely aligned with the patterning slits **151**, may be formed to be relatively thick. This makes it easier to manufacture the organic layer deposition assembly.

[0107] FIG. 10 is a schematic perspective view of an organic layer deposition assembly **900** according to another embodiment of the present invention.

[0108] Referring to FIG. 10, the organic layer deposition assembly **900** according to the current embodiment includes

a deposition source **910**, a deposition source nozzle unit **920**, and a patterning slit sheet **950**.

[0109] In particular, the deposition source **910** includes a crucible **911** that is filled with the deposition material **915**, a cooling block **912** surrounding the crucible **911**, and a heater that may be in the cooling block **912**. The heater heats the crucible **911** to vaporize the deposition material **915**, which is contained in the crucible **911**, so as to move the vaporized deposition material **915** to the deposition source nozzle unit **920**. The deposition source nozzle unit **920**, which has a planar shape, is disposed at a side of the deposition source **910**. The deposition source nozzle unit **920** includes a plurality of deposition source nozzles **921** arranged in the Y-axis direction. The patterning slit sheet **950** and a frame **955** are further disposed between the deposition source **910** and the substrate **500**. The patterning slit sheet **950** includes a plurality of patterning slits **951** arranged in the X-axis direction. In addition, the deposition source **910** and the deposition source nozzle unit **920** may be connected to the patterning slit sheet **950** by a connection member **935**.

[0110] The current embodiment of FIG. 10 differs from the previous embodiments in the arrangement of the plurality of deposition source nozzles in the deposition source nozzle unit **920**, which will now be described in more detail.

[0111] The deposition source nozzle unit **920** is disposed at a side of the deposition source **910**, and in particular, at the side of the deposition source **910** facing the substrate **500**. The deposition source nozzle unit **920** includes a plurality of deposition source nozzles **921** arranged at equal intervals in the Y-axis direction, i.e., a scanning direction of the substrate **500**. The deposition material **915** that is vaporized in the deposition source **910** passes through the deposition source nozzle unit **920** towards the substrate **500**. As described above, when the deposition source nozzle unit **920** includes the plurality of deposition source nozzles **921** arranged in the Y-axis direction, that is, the scanning direction of the substrate **500**, the size of a pattern formed of the deposition material discharged through the patterning slits **951** of the patterning slit sheet **950** is affected by the size of one of the deposition source nozzles **921** (since there is only one line of deposition nozzles in the X-axis direction), and thus no shadow zone may be formed on the substrate **500**. In addition, since the plurality of deposition source nozzles **921** are arranged in the scanning direction of the substrate **500**, even when there is a difference in flux between the deposition source nozzles **921**, the difference may be compensated for and deposition uniformity may be maintained constant.

[0112] FIG. 11 is a schematic perspective view of an organic layer deposition assembly **900'** according to another embodiment of the present invention. Referring to FIG. 11, the organic layer deposition apparatus **900'** according to the current embodiment includes a deposition source **910**, a deposition source nozzle unit **920**, and a patterning slit sheet **950**.

[0113] The current embodiment differs from the previous embodiments in that a plurality of deposition source nozzles **921** formed in the deposition source nozzle unit **920** are tilted at a set or predetermined angle. In particular, the deposition source nozzles **921** may include deposition source nozzles **921a** and **921b** arranged in respective rows. The deposition source nozzles **921a** and **921b** may be arranged in respective rows to alternate in a zigzag pattern. The deposition source nozzles **921a** and **921b** may be tilted by a set or predetermined angle with respect to an XZ plane.

[0114] Therefore, in the current embodiment of the present invention, the deposition source nozzles 921a and 921b are arranged to tilt by a set or predetermined angle to each other. The deposition source nozzles 921a of a first row and the deposition source nozzles 921b of a second row may tilt to face each other. That is, the deposition source nozzles 921a of the first row in a left part of the deposition source nozzle unit 920 may tilt to face a right side portion of the patterning slit sheet 950, and the deposition source nozzles 921b of the second row in a right part of the deposition source nozzle unit 920 may tilt to face a left side portion of the patterning slit sheet 950.

[0115] Due to the structure of the organic layer deposition assembly 900^a according to the current embodiment, the deposition of the deposition material 915 may be adjusted to lessen a thickness variation between the center and the end portions of the substrate 500 and improve thickness uniformity of the deposition film. Moreover, utilization efficiency of the deposition material 915 may also be improved.

[0116] FIG. 12 is a cross-sectional view of an active matrix organic light-emitting display device fabricated by using an organic layer deposition apparatus, according to an embodiment of the present invention.

[0117] Referring to FIG. 12, the active matrix organic light-emitting display device according to the current embodiment is formed on a substrate 500. The substrate 500 may be formed of a transparent material, for example, glass, plastic, or metal. An insulating layer 31, such as a buffer layer, is formed on an entire surface of the substrate 500.

[0118] A thin film transistor (TFT) 40, a capacitor 50, and an organic light-emitting diode (OLED) are disposed on the insulating layer 31, as illustrated in FIG. 12. Here, the capacitor 50 includes a first capacitor electrode 51 and a second capacitor electrode 52.

[0119] A semiconductor active layer 41 is formed on an upper surface of the insulating layer 31 in a set or predetermined pattern. A gate insulating layer 32 is formed to cover the semiconductor active layer 41. The semiconductor active layer 41 may include a p-type or n-type semiconductor material.

[0120] A gate electrode 42 of the TFT 40 is formed in a region of the gate insulating layer 32 corresponding to the semiconductor active layer 41. An interlayer insulating layer 33 is formed to cover the gate electrode 42. The interlayer insulating layer 33 and the gate insulating layer 32 are etched by, for example, dry etching, to form a contact hole exposing parts of the semiconductor active layer 41. In addition, the interlayer insulating layer 33 is formed (patterned) to be between the first capacitor electrode 51 and the second capacitor electrode 52.

[0121] A source/drain electrode 43 is formed on the interlayer insulating layer 33 to contact the semiconductor active layer 41 through the contact hole. A passivation layer 34 is formed to cover the source/drain electrode 43, and is etched to expose a part of the drain electrode 43. An insulating layer (not shown) may be further formed on the passivation layer 34 so as to planarize the passivation layer 34.

[0122] In addition, the OLED 60 displays a set or predetermined image information by emitting red, green, or blue light as current flows. The OLED 60 includes a first electrode 61 disposed on the passivation layer 34. The first electrode 61 is electrically connected to the drain electrode 43 of the TFT 40.

[0123] A pixel defining layer 35 is formed to cover the first electrode 61. An opening 65 is formed in the pixel defining

layer 35, and then an organic layer 63, including an emission layer, is formed in a region defined by the opening 65. A second electrode 62 is formed on the organic layer 63.

[0124] The pixel defining layer 35, which defines individual pixels, is formed of an organic material. The pixel defining layer 35 also planarizes the surface of a region of the substrate 30 in which the first electrode 61 is formed, and in particular, the surface of the passivation layer 34.

[0125] The first electrode 61 and the second electrode 62 are insulated from each other, and respectively apply voltages of opposite polarities to the organic layer 63, including the emission layer, to induce light emission.

[0126] The organic layer 63, including an emission layer (EML), may be formed of a low-molecular weight organic material or a high-molecular weight organic material. When a low-molecular weight organic material is used, the organic layer 63 (including the emission layer) may have a single or multi-layer structure including at least one selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), the emission layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL). Examples of available organic materials may include copper phthalocyanine (CuPc), N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB), tris-8-hydroxyquinoline aluminum (Alq3), and the like.

[0127] After such an organic layer is formed, the second electrode 62 may be formed by the same deposition method as used to form the organic layer 63.

[0128] The first electrode 61 may function as an anode, and the second electrode 62 may function as a cathode. Alternatively, the first electrode 61 may function as a cathode, and the second electrode 62 may function as an anode. The first electrode 61 may be patterned to correspond to individual pixel regions, and the second electrode 62 may be formed to cover all the pixels.

[0129] The first electrode 61 may be formed as a transparent electrode or a reflective electrode. The transparent electrode may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and/or indium oxide (In₂O₃). The reflective electrode may be formed by forming a reflective layer from silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), or a compound thereof, and forming a layer of ITO, IZO, ZnO, and/or In₂O₃ on the reflective layer. The first electrode 61 may be formed by forming a layer by, for example, sputtering, and then patterning the layer by, for example, photolithography.

[0130] The second electrode 62 may also be formed as a transparent electrode or a reflective electrode. When the second electrode 62 is formed as a transparent electrode, the second electrode 62 functions as a cathode. To this end, such a transparent electrode may be formed by depositing a metal having a low work function, such as lithium (Li), calcium (Ca), lithium fluoride/calcium (LiF/Ca), lithium fluoride/aluminum (LiF/Al), aluminum (Al), silver (Ag), magnesium (Mg), or a compound thereof on a surface of the organic layer 63, including an emission layer, and forming an auxiliary electrode layer or a bus electrode line thereon from ITO, IZO, ZnO, In₂O₃, or the like. When the second electrode 62 is formed as a reflective electrode, the reflective layer may be formed by depositing Li, Ca, LiF/Ca, LiF/Al, Al, Ag, Mg, or a compound thereof on the entire surface of the organic layer 63. The second electrode 62 may be formed by using the same

deposition method as used to form the organic layer **63**, including an emission layer, described above.

[0131] A protective layer **64** may be further formed on the second electrode **62**. The protective layer **64** formed on the second electrode **62** may serve as a mask in removing the organic layer **63** from non-pixel regions, and at the same time protect the second electrode **62**.

[0132] FIG. 13 is a plan view of one or more organic layers **63B**, **63G**, and **63R** formed on a substrate **500**, according to an embodiment of the present invention.

[0133] Referring to FIG. 13, the substrate **500** according to one embodiment has a size of at least 40 inches, and an organic layer **63B**, **63G**, and **63R** is formed to have a linear pattern. That is, the organic layer **63B**, **63G**, and **63R** is formed to have a plurality of linear stripes including a first or blue (B) stripe **63B**, a second or green (G) stripe **63G**, and a third or red (R) stripe **63R**. The linear pattern of the organic layer **63B**, **63G**, and **63R** is formed using any suitable one of the above described organic layer deposition apparatuses according to embodiments of the present invention. Here, the organic layer **63B**, **63G**, and **63R** may include an emission layer (EML) for emitting a blue (B), green (G), or red (R) light. For example, the first or blue (B) stripe **63B** includes the emission layer (EML) for emitting blue light, the second or green (G) stripe **63G** includes the emission layer (EML) for emitting green light, and the third or red (R) stripe **63R** includes the emission layer (EML) for emitting red light. Moreover, the organic layer **63B**, **63G**, and **63R** may each further include a layer selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), an electron injection layer (EIL), and combinations thereof.

[0134] FIG. 14 is a cross-sectional view of the one or more layers formed on the substrate taken along line I-I of FIG. 13, according to an embodiment of the present invention.

[0135] Referring now to FIG. 14, the organic layer is formed on the substrate **500** to have a non-uniform thickness. That is, a first portion **P1** of the organic layer on the substrate **500** is shown to have a thickness or height of **h1**, a second portion **P2** of the organic layer on the substrate **500** is shown to have a thickness or height of **h2**, a third portion **P3** of the organic layer on the substrate **500** is shown to have a thickness or height of **h3**, a fourth portion **P4** of the organic layer on the substrate **500** is shown to have a thickness or height of **h4**, and a fifth portion **P5** of the organic layer on the substrate **500** is shown to have a thickness or height of **h5**. Here, the thickness **h1** is greater than **h2**, the thickness **h2** is greater than the thickness **h3**, the thickness **h3** is greater than the thickness **h4**, and the thickness **h4** is greater than the thickness **h5**. Also, the first, second, third, fourth, or fifth portion **P1**, **P2**, **P3**, **P4**, or **P5** may be a cross-sectional portion of the first, second, or third stripe **63B**, **63B**, or **63R**. That is, in one embodiment, the fifth portion **P5** is the cross-sectional portion of the first stripe **63B**, the fourth portion **P4** is the cross-sectional portion of the second stripe **63G**, and the third portion **P3** is the cross-sectional portion of the third stripe **63R**.

[0136] Here, the non-uniform thickness of the organic layer **P1**, **P2**, **P3**, **P5**, and **P5** is formed using any suitable one of the above described organic layer deposition apparatuses according to embodiments of the present invention.

[0137] Moreover, the suitable organic layer deposition apparatus includes an organic layer deposition assembly that is composed to include a patterning slit sheet **150**. That is, as shown in FIG. 14, the patterning slit sheet **150** of the organic

layer deposition assembly is utilized to form the organic layer on the substrate **500**. Here, the patterning slit sheet **150** is disposed to be spaced apart from the substrate **500** and is smaller than the substrate **500** in size. Moreover, in the deposition of the organic layer on the substrate **500** according to one embodiment, the patterning slit sheet **150** or the substrate **500** is configured to be moved relative to the other. As such, the organic layer is formed on the substrate **500** to have the linear pattern as shown in FIG. 13, and/or is formed to have the non-uniform thickness as shown in FIG. 14

[0138] In view of the foregoing, the organic layer deposition apparatuses according to the embodiments of the present invention may be applied to form an organic layer or an inorganic layer of an organic TFT, and to form layers from various suitable materials.

[0139] Also, as described above, organic layer deposition apparatuses according to aspects of the present invention may be readily manufactured and may be simply applied to the manufacture of large-sized display devices on a mass scale. The organic layer deposition apparatuses may improve manufacturing yield and deposition efficiency.

[0140] While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

What is claimed is:

1. An organic layer deposition apparatus comprising:
an electrostatic chuck for supporting a substrate;
a deposition unit comprising a chamber for maintaining a vacuum and an organic layer deposition assembly for depositing at least one organic layer on the substrate supported by the electrostatic chuck; and
a first conveyer unit passing through the chamber and for moving the electrostatic chuck supporting the substrate into the deposition unit,
wherein the first conveyer unit comprises a guide unit comprising a receiving member for supporting the electrostatic chuck to be movable in a direction while the electrostatic chuck is spaced apart from the first conveyer unit, and
wherein the substrate is spaced apart from the organic layer deposition assembly, and the substrate or the organic layer deposition assembly is configured to be moved relative to the other during deposition.
2. The organic layer deposition apparatus of claim 1, further comprising:
a loading unit for fixing the substrate to the electrostatic chuck; and
an unloading unit for separating the substrate on which deposition has been completed from the electrostatic chuck.
3. The organic layer deposition apparatus of claim 2, wherein the first conveyer unit is configured to sequentially move the electrostatic chuck to the loading unit, the deposition unit, and the unloading unit.
4. The organic layer deposition apparatus of claim 2, further comprising a second conveyer unit for returning the electrostatic chuck separated from the substrate, from the unloading unit to the loading unit.
5. The organic layer deposition apparatus of claim 1, wherein the guide unit comprises:

a driving unit for generating a driving force to move the electrostatic chuck; and

a magnetic levitation bearing for levitating the electrostatic chuck above the receiving member to move without contacting the receiving member.

6. The organic layer deposition apparatus of claim 5, wherein the driving unit comprises a linear motor.

7. The organic layer deposition apparatus of claim 6, wherein the linear motor comprises a magnetic rail disposed at a side of the electrostatic chuck and a coil disposed in the receiving member.

8. The organic layer deposition apparatus of claim 5, wherein the magnetic levitation bearing comprises a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck, and the driving unit is disposed at a side of the electrostatic chuck.

9. The organic layer deposition apparatus of claim 5, wherein the magnetic levitation bearing comprises a magnet selected from the group consisting of electromagnets, permanent magnets, superconducting magnets, and combinations thereof.

10. The organic layer deposition apparatus of claim 1, further comprising a gap sensor for measuring a gap interval between the receiving member and the electrostatic chuck.

11. The organic layer deposition apparatus of claim 10, further comprising a magnetic levitation bearing controlled by the gap sensor to provide a magnetic force for levitating the electrostatic chuck above the receiving member.

12. The organic layer deposition apparatus of claim 11, wherein the magnetic levitation bearing comprises a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck.

13. The organic layer deposition apparatus of claim 12, wherein the guide sensor comprising a first guide sensor for measuring a gap interval between the electrostatic chuck and the first conveyer unit along a first direction, and a second guide sensor for measuring a gap interval between the electrostatic chuck and the first conveyer unit along a second direction crossing the first direction.

14. The organic layer deposition apparatus of claim 1, further comprising:

- a first magnetic levitation bearing for levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a first direction; and
- a second magnetic levitation bearing for levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a second direction crossing the first direction.

15. The organic layer deposition apparatus of claim 1, wherein the receiving member comprises a receiving groove for receiving the opposite sides of the electrostatic chucks.

16. The organic layer deposition apparatus of claim 1, wherein the organic layer deposition assembly comprises a plurality of organic layer deposition assemblies disposed in the chamber.

17. The organic layer deposition apparatus of claim 1, wherein the chamber comprises a first chamber and a second chamber interconnected with each other, and the organic layer deposition assembly comprises a plurality of organic layer deposition assemblies disposed in each of the first and second chambers.

18. The organic layer deposition apparatus of claim 1, wherein the organic layer deposition assembly comprises:

a deposition source configured to discharge a deposition material;

a deposition source nozzle unit disposed at a side of the deposition source and comprising a plurality of deposition source nozzles; and

a patterning slit sheet disposed to face and spaced apart from the deposition source nozzle unit, having a plurality of patterning slits, and being smaller than the substrate.

19. An active matrix organic light-emitting display device comprising:

- the substrate having a size of at least 40 inches; and
- the at least one organic layer on the substrate having a linear pattern formed using the organic layer deposition apparatus of claim 1.

20. The active matrix organic light-emitting display device of claim 19, wherein the at least one organic layer comprises an emission layer (EML).

21. The active matrix organic light-emitting display device of claim 20, wherein the at least one organic layer further comprises a layer selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), an electron injection layer (EIL), and combinations thereof.

22. The active matrix organic light-emitting display device of claim 19, wherein the at least one organic layer has a non-uniform thickness.

23. An active matrix organic light-emitting display device comprising:

- the at least one organic layer having a non-uniform thickness formed using the organic layer deposition apparatus of claim 1.

24. A method of manufacturing an organic light-emitting display device, the method comprising:

- supporting a substrate with an electrostatic chuck;
- conveying the electrostatic chuck supporting the substrate into a chamber maintained at a vacuum by using a first conveyer unit passing through the chamber; and
- depositing at least one organic layer on the substrate by using an organic layer deposition assembly disposed in the chamber while the substrate or the organic layer deposition assembly moves relative to the other,

wherein the electrostatic chuck is moved with the first conveyer unit in the chamber while spaced apart from the first conveyer unit, and

wherein the substrate is spaced apart from the organic layer deposition assembly.

25. The method of claim 24, wherein the conveying of the electrostatic chuck comprises levitating the electrostatic chuck to be spaced apart from the first conveyer unit.

26. The method of claim 25, wherein the conveying of the electrostatic chuck comprises:

- generating a driving force by a driving unit to move the electrostatic chuck; and
- levitating the electrostatic chuck to move without contacting the first conveyer unit by a magnetic levitation bearing.

27. The method of claim 24, wherein the conveying of the electrostatic chuck comprises measuring a gap interval between the first conveyer unit and the electrostatic chuck by a gap sensor.

28. The method of claim 27, wherein the conveying of the electrostatic chuck comprises:

controlling a magnetic levitation bearing by the gap sensor to provide a magnetic force; and
levitating the electrostatic chuck to move without contacting the first conveyer unit by the magnetic force.

29. The method of claim **28**, wherein the magnetic levitation bearing comprises a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck.

30. The method of claim **28**, wherein the measuring of the gap interval comprises:

measuring a gap interval between the electrostatic chuck and the first conveyer unit along a first direction by a first guide sensor; and

measuring a gap interval between the electrostatic chuck and the first conveyer unit along a second direction crossing the first direction by a second guide sensor.

31. The method of claim **30**, wherein the levitating of the electrostatic chuck to move without contacting the first conveyer unit by the magnetic force comprises:

levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a first direction by a first magnetic levitation bearing; and

levitating the electrostatic chuck to be spaced apart from the first conveyer unit along a second direction crossing the first direction by a second magnetic levitation bearing.

32. The method of claim **24**, further comprising, after the depositing of the organic layer:

removing the substrate on which the deposition has been completed out of the chamber by using the first conveyer unit;

separating the substrate from the electrostatic chuck; and returning the electrostatic chuck separated from the substrate to support another substrate with the electrostatic chuck by using a second conveyer unit disposed outside the chamber.

33. The method of claim **24**, wherein the deposition assembly comprises a plurality of organic layer deposition assemblies disposed in the chamber, and the depositing is performed by using the plurality of organic layer deposition assemblies in sequence.

34. The method of claim **24**, wherein the chamber comprises a first chamber and a second chamber interconnected with each other, and the organic layer deposition assembly comprises a plurality of organic layer deposition assemblies disposed in each of the first and second chambers, wherein the depositing is continuously performed with the substrate moving between the first chamber and the second chamber.

35. The method of claim **24**, wherein the organic layer deposition assembly comprises:

a deposition source configured to discharge a deposition material;

a deposition source nozzle unit disposed at a side of the deposition source and comprising a plurality of deposition source nozzles; and

a patterning slit sheet disposed to face and spaced apart from the deposition source nozzle unit, having a plurality of patterning slits, and being smaller than the substrate.

36. The method of claim **24**, wherein the first conveyer unit comprises: a guide unit comprising a receiving member for supporting the electrostatic chuck to be movable in a direction; a linear motor for generating a driving force to move the electrostatic chuck; and a magnetic levitation bearing for levitating the electrostatic chuck to be spaced apart from the receiving member.

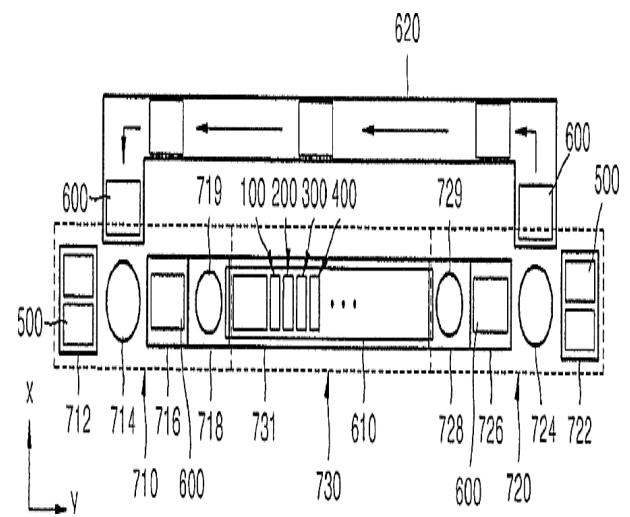
37. The method of claim **36**, wherein the linear motor comprises a magnetic rail disposed at a side of the electrostatic chuck and a coil disposed in the receiving member.

38. The method of claim **36**, wherein the magnetic levitation bearing comprises a side magnetic levitation bearing disposed at a side of the electrostatic chuck, and an upper magnetic levitation bearing disposed on the electrostatic chuck, and the driving unit is disposed at a side of the electrostatic chuck.

39. An active matrix organic light-emitting display device comprising:

the substrate having a size of at least **40** inches; and
the at least one organic layer on the substrate having a linear pattern formed using the method of claim **24**.

40. An active matrix organic light-emitting display device comprising:


the at least one organic layer having a non-uniform thickness formed using the method of claim **24**.

* * * * *

专利名称(译)	有机层沉积设备和通过使用其制造有机发光显示设备的方法		
公开(公告)号	US20130009177A1	公开(公告)日	2013-01-10
申请号	US13/492144	申请日	2012-06-08
[标]申请(专利权)人(译)	常SEOK RAK NAM到myeng WOO 江姬CHEOL 金正日宪 HONG JONG WON 常UNO		
申请(专利权)人(译)	昌硕RAK NAM到myeng-WOO 江姬哲 金正宪 HONG JONG-WON 常UNO		
当前申请(专利权)人(译)	三星DISPLAY CO. , LTD.		
[标]发明人	CHANG SEOK RAK NAM MYENG WOO KANG HEE CHEOL KIM JONG HEON HONG JONG WON CHANG UNO		
发明人	CHANG, SEOK-RAK NAM, MYENG-WOO KANG, HEE-CHEOL KIM, JONG-HEON HONG, JONG-WON CHANG, UNO		
IPC分类号	H01L51/56 B05C11/00 B05C13/00 H01L51/52 B05C15/00		
CPC分类号	C23C14/12 C23C14/50 H01L21/67173 H01L21/6831 H01L21/6776 H01L21/67784 H01L21/67709 B05B13/0221 B05D1/60 C23C14/042 C23C14/24 H01L27/3244 H01L27/3246 H01L51/56		
优先权	1020110066124 2011-07-04 KR		
其他公开文献	US9512515		
外部链接	Espacenet USPTO		

摘要(译)

有机层沉积设备和使用该有机层沉积设备制造有机发光显示设备的方法。有机层沉积设备包括：静电卡盘，其固定地支撑作为沉积靶的基板;沉积单元，包括保持真空的腔室和有机层沉积组件，用于在由静电卡盘固定支撑的基板上沉积有机层;第一输送单元，用于将固定支撑基板的静电卡盘移动到沉积单元中，其中第一输送单元穿过腔室内，第一输送单元包括导向单元，该导向单元具有用于支撑静电卡盘的接收构件。可以向一个方向移动。

